\(\int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [614]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 403 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (9 a^2 A+8 A b^2-10 a b B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^4 d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} \left (8 A b^2+a^2 (9 A-5 B)-2 a b (A+5 B)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^3 d \sqrt {\sec (c+d x)}}-\frac {2 (4 A b-5 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 a d} \]

[Out]

-2/15*(4*A*b-5*B*a)*sec(d*x+c)^(3/2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a^2/d+2/5*A*sec(d*x+c)^(5/2)*sin(d*x+c)
*(a+b*cos(d*x+c))^(1/2)/a/d+2/15*(a-b)*(9*A*a^2+8*A*b^2-10*B*a*b)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/
(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)
*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^4/d/sec(d*x+c)^(1/2)-2/15*(8*A*b^2+a^2*(9*A-5*B)-2*a*b*(A+5*B))*csc(d*x+c)*E
llipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2
)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.11 (sec) , antiderivative size = 403, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3040, 3079, 3134, 3077, 2895, 3073} \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {2 (4 A b-5 a B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}{15 a^2 d}+\frac {2 (a-b) \sqrt {a+b} \left (9 a^2 A-10 a b B+8 A b^2\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{15 a^4 d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} \left (a^2 (9 A-5 B)-2 a b (A+5 B)+8 A b^2\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{15 a^3 d \sqrt {\sec (c+d x)}}+\frac {2 A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d} \]

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^(7/2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*(a - b)*Sqrt[a + b]*(9*a^2*A + 8*A*b^2 - 10*a*b*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a
+ b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*
Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(15*a^4*d*Sqrt[Sec[c + d*x]]) - (2*Sqrt[a + b]*(8*A*b^2 + a^2*(9*A - 5*B
) - 2*a*b*(A + 5*B))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sq
rt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a -
b)])/(15*a^3*d*Sqrt[Sec[c + d*x]]) - (2*(4*A*b - 5*a*B)*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*
x])/(15*a^2*d) + (2*A*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*a*d)

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3079

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c +
d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*
(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n
, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 a d}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} (-4 A b+5 a B)+\frac {3}{2} a A \cos (c+d x)+A b \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{5 a} \\ & = -\frac {2 (4 A b-5 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 a d}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} \left (9 a^2 A+8 A b^2-10 a b B\right )+\frac {1}{4} a (2 A b+5 a B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{15 a^2} \\ & = -\frac {2 (4 A b-5 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {\left (\left (-9 a^2 A-8 A b^2+10 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{15 a^2}+\frac {\left (\left (-8 A b^2-a^2 (9 A-5 B)+2 a b (A+5 B)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{15 a^2} \\ & = \frac {2 (a-b) \sqrt {a+b} \left (9 a^2 A+8 A b^2-10 a b B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^4 d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} \left (8 A b^2+a^2 (9 A-5 B)-2 a b (A+5 B)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^3 d \sqrt {\sec (c+d x)}}-\frac {2 (4 A b-5 a B) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 a d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 13.68 (sec) , antiderivative size = 385, normalized size of antiderivative = 0.96 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \left (-\frac {\sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 (a+b) \left (9 a^2 A+8 A b^2-10 a b B\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {\frac {b+a \sec (c+d x)}{(a+b) (1+\sec (c+d x))}}-2 a \left (8 A b^2+2 a b (A-5 B)+a^2 (9 A+5 B)\right ) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {\frac {b+a \sec (c+d x)}{(a+b) (1+\sec (c+d x))}}+\left (9 a^2 A+8 A b^2-10 a b B\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}+(a+b \cos (c+d x)) \sqrt {\sec (c+d x)} \left (\left (9 a^2 A+8 A b^2-10 a b B\right ) \sin (c+d x)+a (-4 A b+5 a B+3 a A \sec (c+d x)) \tan (c+d x)\right )\right )}{15 a^3 d \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^(7/2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*(-((Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(a + b)*(9*a^2*A + 8*A*b^2 - 10*a*b*B)*EllipticE[ArcSin[Tan[(c
 + d*x)/2]], (-a + b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(b + a*Sec[c + d*x])/((a + b)*(1 + Sec[c + d
*x]))] - 2*a*(8*A*b^2 + 2*a*b*(A - 5*B) + a^2*(9*A + 5*B))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b
)]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(b + a*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] + (9*a^2*A + 8*A*b^2
- 10*a*b*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/Sqrt[Sec[(c + d*x)/2]^2])
+ (a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]*((9*a^2*A + 8*A*b^2 - 10*a*b*B)*Sin[c + d*x] + a*(-4*A*b + 5*a*B + 3
*a*A*Sec[c + d*x])*Tan[c + d*x])))/(15*a^3*d*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3319\) vs. \(2(363)=726\).

Time = 25.69 (sec) , antiderivative size = 3320, normalized size of antiderivative = 8.24

method result size
parts \(\text {Expression too large to display}\) \(3320\)
default \(\text {Expression too large to display}\) \(3350\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(7/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15*A/d*sec(d*x+c)^(7/2)/(1+cos(d*x+c))/(a+cos(d*x+c)*b)^(1/2)*(-16*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/
(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)
^4+4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)
/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^4+16*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^4-9*EllipticE(cot(
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+
b))^(1/2)*a^2*b*cos(d*x+c)^3-8*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^3+2*EllipticF(cot(d*x+c)-csc(d*x+c),(-
(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(
d*x+c)^3+8*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x
+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^3+9*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^3-3*sin(d*x+c)*
cos(d*x+c)*a^3+sin(d*x+c)*cos(d*x+c)^2*a^2*b-18*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^4+9*cos(d*x+c)^5*Elli
pticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*a^3-9*cos(d*x+c)^5*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-8*b^3*cos(d*x+c)^4*sin(d*x+c)+a^2*b*cos(d*x
+c)^3*sin(d*x+c)-4*a*b^2*cos(d*x+c)^3*sin(d*x+c)+2*cos(d*x+c)^5*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))
^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b+8*cos(d*x+c)^5*E
llipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*a*b^2-9*cos(d*x+c)^5*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-8*cos(d*x+c)^5*((a+cos(d*x+c)*b)/(1+
cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2
))*a*b^2-18*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*
x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^4-16*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b^3*cos(d*x+c)^4+18*EllipticF(
cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))
/(a+b))^(1/2)*a^3*cos(d*x+c)^4-9*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^3-8*EllipticE(cot(d*x+c)-csc(d*x+c),(-
(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b^3*cos(d*
x+c)^3-3*a^3*cos(d*x+c)^2*sin(d*x+c)-8*cos(d*x+c)^5*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3-9*cos(d*x+c)^3*a^3*sin(d*x+c)-
9*cos(d*x+c)^4*a^2*b*sin(d*x+c)+4*cos(d*x+c)^4*a*b^2*sin(d*x+c))/a^3-2/3*B/d*sec(d*x+c)^(7/2)/(1+cos(d*x+c))/(
a+cos(d*x+c)*b)^(1/2)*(cos(d*x+c)^5*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2-2*cos(d*x+c)^5*EllipticF(cot(d*x+c)-csc(d*x+c)
,(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b+2*c
os(d*x+c)^5*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*
x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b+2*cos(d*x+c)^5*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b^2+2*cos(d*x+c)^4*EllipticF(co
t(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*a^2-4*cos(d*x+c)^4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(
d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b+4*cos(d*x+c)^4*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+
b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+4*cos(d*
x+c)^4*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-cs
c(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(
1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^3-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(
d*x+c)^3+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c
)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)^3+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+c
os(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)^3-cos(d*x+c)^4*a*
b*sin(d*x+c)+2*b^2*cos(d*x+c)^4*sin(d*x+c)-cos(d*x+c)^3*a^2*sin(d*x+c)+a*b*cos(d*x+c)^3*sin(d*x+c)-a^2*cos(d*x
+c)^2*sin(d*x+c))/a^2

Fricas [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {7}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sec(d*x + c)^(7/2)/sqrt(b*cos(d*x + c) + a), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(7/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {7}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(7/2)/sqrt(b*cos(d*x + c) + a), x)

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {7}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(7/2)/sqrt(b*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {7}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(7/2))/(a + b*cos(c + d*x))^(1/2),x)

[Out]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(7/2))/(a + b*cos(c + d*x))^(1/2), x)